L2 -cohomology of manifolds with flat ends

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 L 2 cohomology of Manifolds with flat ends

We give a topological interpretation of the space of L2-harmonic forms on Manifold with flat ends. It is an answer to an old question of J. Dodziuk. We also give a Chern-Gauss-Bonnet formula for the L2-Euler characteristic of some of these Manifolds. These results are applications of general theorems on complete Riemannian Manifold whose Gauss-Bonnet operator is nonparabolic at infinity. Résumé...

متن کامل

Weighted L2 Cohomology of Asymptotically Hyperbolic Manifolds

The main results are summarized by Figure 1. They demonstrate the resiliency of the isomorphism constructed in [Nai99] between weighted cohomology and a variant of weighted L2 cohomology. Our attention is restricted from generic locally symmetric spaces to spaces whose ends are hyperbolic, diffeomorphic to (0,∞) × (S1)n−1, and carry exponentially warped product metrics. For weighting functions ...

متن کامل

Rigidity and L2 cohomology of hyperbolic manifolds

— When X = Γ\Hn is a real hyperbolic manifold, it is already known that if the critical exponent is small enough then some cohomology spaces and some spaces of L2 harmonic forms vanish. In this paper, we show rigidity results in the borderline case of these vanishing results. Résumé. — La petitesse de l’exposant critique du groupe fondamental d’une variété hyperbolique implique des résultats d’...

متن کامل

L2-cohomology and Complete Hamiltonian Manifolds

A classical theorem of Frankel for compact Kähler manifolds states that a Kähler S-action is Hamiltonian if and only if it has fixed points. We prove a metatheorem which says that when Hodge theory holds on non-compact manifolds, then Frankel’s theorem still holds. Finally, we present several concrete situations in which the assumptions of the metatheorem hold. 1. The Classical Frankel Theorem ...

متن کامل

Low dimensional flat manifolds with some classes of Finsler metric

Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometric and Functional Analysis

سال: 2003

ISSN: 1016-443X,1420-8970

DOI: 10.1007/s000390300009